Expanding Direction of the Period Doubling Operator

نویسندگان

  • Yunping Jiang
  • Takehiko Morita
چکیده

We prove that the period doubling operator has an expanding di rection at the xed point We use the induced operator a Perron Frobenius type operator to study the linearization of the period dou bling operator at its xed point We then use a sequence of linear operators with nite ranks to study this induced operator The proof is constructive One can calculate the expanding direction and the rate of expansion of the period doubling operator at the xed point

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Renormalization for a Class of Dynamical Systems: Some Local and Global Properties Alexandre Baraviera, Renaud Leplaideur and Artur O. Lopes

We study the period doubling renormalization operator for dynamics which present two coupled laminar regimes with two weakly expanding fixed points. We focus our analysis on the potential point of view, meaning we want to solve V = R(V ) := V ◦ f ◦ h+ V ◦ h, where f and h are naturally defined. Under certain hypothesis we show the existence of a explicit “attracting” fixed point V ∗ forR. We ca...

متن کامل

On the Diagram of One Type Modal Operators on Intuitionistic fuzzy sets: Last expanding with $Z_{alpha ,beta }^{omega ,theta

Intuitionistic Fuzzy Modal Operator was defined by Atanassov in cite{at3}in 1999. In 2001, cite{at4}, he introduced the generalization of thesemodal operators. After this study, in 2004, Dencheva cite{dencheva} definedsecond extension of these operators. In 2006, the third extension of thesewas defined in cite{at6} by Atanassov. In 2007,cite{gc1}, the authorintroduced a new operator over Intuit...

متن کامل

On the Hyperbolicity of the Period-doubling Fixed Point

We give a new proof of the hyperbolicity of the fixed point for the period-doubling renormalization operator using the local dynamics near a semi-attractive fixed point (in a Banach space) and the theory of holomorphic motions. We also give a new proof of the exponential contraction of the Feigenbaum renormalization operator in the hybrid class of the period-doubling fixed point: such proof use...

متن کامل

The spectrum of the period - doubling operator in terms of cycles

The eigenvalue spectrum of the period-doubling operator is evaluated both in terms of unstable periodic orbits and by a diagonalization at the operator. Cycles up to length ten yield the twelve leading eigenvalues; direct diagonalization yields some 50 eigenvalues. The Feigenbaum 6, the Hausdorff dimension and the escape rate for the period-doubling repeller are evaluated to high accuracy. In t...

متن کامل

Asymptotics of scaling parameters for period-doubling in unimodal maps with asymmetric critical points

The universal period-doubling scaling of a unimodal map with an asymmetric critical point is governed by a period-2 point of a renormalisation operator. The period-2 point is parametrised by the degree of the critical point and the asymmetry modulus. In this paper we study the asymptotics of period-2 points and their associated scaling parameters in the singular limit of degree tending to 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1992